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ABSTRACT

A suite of computational models has been developed
which simulate thermal/chemical convection over s wide range
of Rayleigh numbers both in 2- D annular and 3-D Cartesian
geometries, for small Reynolds number flow, and a variety of
boundary conditions. These mimulators are revealing the pat-
terns of convection that may occur in the earth, from man-
tle scale down to more localized regions such as mid-ocean
spreading centers, on down to the scale of magma chambers.
Fentures such as surface plates, variable viscosity and chemi-
cal buoyancy can have a dramnatic impact on convective pat-
terns compared to those seen in sitnple, constant property,
free or fixed surface systems. In most casen, the nonlinear
dynamics of tiese systems derive from thermal and chemi-
cul forees, rather than inertial. These models can be used
1o stucdy general features and dynamicr of convecting viscous
fluvds. and can also be used to constrain possible explana.
tions for geophy sieal observations such as heat flow, gravity,
topography, plate speeds, and inotopic distributions. Com-
putational resources hinve reached a level at which numerical
solutions of complex processen are feasible,

NOMENCLAT URE

¢ gravitational aeeeleration mn/n?
' rivhus m
t time arc
u' horirontal veloaeity in 1 direetion in 3 D,

tadin! velocity 21 m/n
" hosonta veloeity in y direction in 3 D,

nsnmthind veloeity in 2 D m/n
n vertien] veloreity in 2 diteetumin 3 D m/n
1 spntind dynersion i

A  meh cell face are. m?

B ratio of chemical to thermal buoyancy

C  concentration kg/kg
H  depth of system m

Q  cormrection Lerms to cance! 0{At) error

T  tempenture *C

D  rate of heat production from radioactive decay &
D. molecular diffusivity m?/n
L. Lewis number

N; number of faces on a mesh cell

R, Rayleigh number

U velocity vector m/s

a thermal expannivity m/in
N thermal diffusivity m?/n
+ kinematic viscosity m?/s
p  density kg/m?
po  reference density kg/in?
m  dennity of upper layer kg/m?
p1  demsity of lower layer kg/m?
q angular dimension ¢

At time step size ner
Ap  density difference kg/m?
ASl  mesh cell voume m?

I velocity potentinl for 3-D model m'/n
¥ atremn function for 2-D model m?/n
INTRODUCTION

Flwd flow ayatemn of geophymend interest inclide conveetion
in the inantle with teetonie plaves and ehemieal heterogeneity,
conveetion beneath mid ocean tidges, and convection within
magma bodien Other systemin involving, ereeping, flow include



subduction of slabs with subsequent delamination. In each of
these cases, the flow is slow, ie, essentially inertialess, but
the thermal and chemical siructure may be complex, e.g.,
high Rayleigh number and presence of two or more species.
Usually, analytical solutions for the governing equations are
not available and numerical approximations are used.

Well-conceived numerical methods are required to adequately
resolve the transier-t, turbulent or highly convoluted flow pat-
terns and temperature/concentration structures that can de-
velop in these models. There are several numerical approxi-
mation methods that can be used, e.g., firite differences, fi-
nite clements, adaptive meshes, the Lagrangian approach, or
spectral representations. The approach taken here is to use
front tracking schemes in conjunction with high-order finite
difference and spectral methodologies. Finite differences are
fairly simple compared to the other approaches, and can be
highly accurate if done carefully. Front tracking methods can
follow sub-scale structure or irregularly shaped features such
as subducting slabs that may not move in a direction that is
aligned with computational zones and are difficult for finite
differencen to treat. Together, these methods provide a very
powerful wny of simulating complex flows. This paper will
describe the finite difference and front tracking algorithms
used. and present three applications.

MODEL

The governing equations for creeping fiow with chemical strat-
iticntion are listrd and described here. Thin treatment ne-
glects complientions such as temperature dependent viscos
ity such features lead to an additional set of considerations
for numerical methads. The emphasis in this short paper is
on eonverting systems of imniscible species with and withou!.
|nlnh--..

For n two species, isovisenus flow subject to a Boussinesq
approxunation for thermal and chemienl buoynney, a strean
function,  vorticity formnlation ean be used, resulting in the
following equation set (see, .., Christensen and Yuen, 1084):

for 2 D nnnuine
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where thermal Rayleigh number R, = apygATH?/xv and
B = Ap/p/aAT is the ratio of chemical to thermal buoy-
ancy, T is temperature, C is concentration, ¥ is the stream
function in 2-D, T is the velocity potential in 3-D, a is ther-
mal expansion cocflicient, and Ag = p; — py, the difference
in density between the twe. species, AT is temperature dif-
ference betwe:n top and bottom surfaces, g is gravity, H is
depth of the system, « is thermal diffusivity, and v is kine-
matic viscosity.

Density is given by
p=po((1—nAT-T+%,'C) (5)

The non-dimensional energy equation in conservative form is

%!1-+V-(E'T)=V'T+D (6)
where D is the rate of hent produrtion from radioactive de-
cay. For an incompressible Auid, the conseration equation of
species is -

% +V-(v'C) = %V’C (7

where [)¢- is material diffusivity, on the orcer of 1077 m?/s
(Hoffman and Magaritz, 1977) or lesa in the carth's mantlc,
and « is on the order of 10°* m?/s (McKenzie, ltoberts and
Weins, 1974), so that the right hand side of eqn. (7) is neg-
ligitile, and the equation is easentially an advective transport
ecquation. The ratio D¢/« is 1/Le, where Le is the Lewis
number,

NUMERICAIL SOLUTION

‘The region of interest is first divided into a uniform mesh of
cells. Present practical hmit on the maxinm size of a mesh
is ahout 500,000 rells on » CRAY-XMP. More ean be uned,
but only if hardware such us solid state disks or a very large
computer such as n CRAY-YMI® are available. The solution
of eqquations (1) and (3) is relatively straight foowed In2-D,
Equ (1) ix used. It is Fourier transforined in the @ direction,
leaving, a coupled pair of second mder ordin ay differentinl
equationn for each wave number.  Centered differencing of
theae equations restlts n A set of tridingonal matrix equa
tions, wlich can be solved very fast. A back transforin in
then executed to get the strean function aud then the ve
loety. In 3 D, Fqn (3) ix transformed twice, first in the r
dimension, then in the y dimension, resnlting in a 4th or
der ordinmy differentinl equation for each wave timber pait.
Centered ditferencing tesults in a pentadingonnl matnx equa
o to solve for ench wave munber pric The solution of
these ate back tinesformed to obtin ' and then the veloe
ihes  The tempernture solution, Egno {6), is stiictly finite
differenee forwaed i tiune, e mtegiated in spice, with
tensan dhfluaivity to eancel nimetienl dispersion



The finite diffierence analogue of Eqn. (6) for temperature is

TH _ n At ad I_'f'-dA
l)l_|)l+A_Ql _ou
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+D (8)

where @ = V. W'T, and Ny is the number of faces (4 for
2-D, 6 for 3-D} on a cell, AN is the volume of a cell, A is
cell face area, superseript n refers to tinie level, and subscript
17k refers te cell location. The integr.as on the right hand
sude of Eqn. (8) are evaluated at time level n over each face
of a computational cell. The last integral term on the right
hand side of Eqn. (8) is required to make the finite difference
form approach the solution of the differential equation. It is
a corrector term to cancel O(At) error introduced by forward
time diflerencing (Hirt, 1968) of the lefthand side of Eqn.
(G). It cancels (almoat) the numerical diffusion introduced by
the finite difference form and providea approximately O(At?)
accuracy (Ramshaw and Dukowicz, 1979; Margolin and Smo-
larkiewicz, 1989). The integration of the first integral on the
right requires special treatment. Over each. vell face, velocity
is a bilinear function between the values u* cell corners, and
temperature is a quadratie. The forin for T in 2-D annular
geometry over a {ace perpendicular to a radius is

T = 1".(1:—" + u(o)-.m) + Toay (% -u(o)-m) (9)
T\ = 0Ty +(1 - O)T,, (10)

whete @ is fracnonnl distanee in the azimuthal direction from
nide  tonode p 4 1, Ar is cell width in the direetion perpen-
dieulnr to @ idientes cell number in the r direction and § in
the # direction, and v is huew in 8. A completely nnalogous
expression s used over faces in the perpendicular direction.
Tl 1 a high order upwaned scheme, consisting of n 9 point
stencil in 2 I and a 27-point steneil in 3-D, and ix very ac-
curate, ALY (Ronche, 1972), when used in Equ. (8). The
mtegration of Eqn. (8) is exact using two point (in ench «i-
mrension) Gaussian quadrature. In 3-D, Equs. (9) and (10)
neguite two dimensionnd dependency, but otherwise the ap-
pronch s identical. An important feature of this solution is
that mass and energy are conservesd. Thin in frequently as -
portant for arcuracy an the forina truneation error (Roache,
192

I the Lewin mumber Le is not large, the advective diffusive
Fan  (7) enn be solved accurntely using, the snme scheme
as deseribed for solving Equ (6) For large Lewin number
vihues, even that seheme will generate excemsive nunierieal
thilusion. We then treat the materinls as exsentially smmis
cible aned use 0 front tracking schetre to follow the interfaee
hietween the specjon

FRONT-TRACKING

The primary advantage of front tracking methods is that they
can follow interfaces even when they becomes highly convo-
luted or disconnected. Here, highly deformable marker chains
and marker surfaces are used to follow the evolution of con-
vaction in a system of two immiacible materials. In 2-D, the
interface consists of a string of particles whose velocities are
determined by interpolation from the velocity values com-
puted at cell corners. Points can be added or deleted; strings
can split or merge, so that a collection of arbitrarily shaped,
disconnected regions can be followed. The criteria for adding
and deleting points involve the separation between successive
points and the local curvature. In 3-D, the interfacer con-
sist of sheets of connected triangles. Rules for adding and
subtracting triangles, and splitting and merging sheews are
more involved than in 2-D, and include tests on the area and
ratio of altitudea in each triangle (sec, e.g., Dritachel, 1988;
Schafer-Perini, Wilson and Perini, 1990; Schafer-Perini and
Wilson, 1990). Forward and backward link lists are used to
recuce computer memory and rur time. Calculation of the
concentration of each specic in cach finite difference mesh cell
is necded for the buoyancy term in Eqns. (1) and (3) and is
deermined by a careful calculation of the volume occupied
by each specie in each mesh cell. This requires » tabulation
of the parts of each chain or sheet that lie in each mesh ccll.
This approach greatly reduces the artificial mixing that oc-
curs when using ordinary flnite difference or finite elenient
transport solutions. Examples of numerical solutions are pre-
sented now toillustrate these processes and solution methods.

EXAMPLES

(1) 3-D Convection - Effect of Plates and Internal
Heating

Two of the most important features affecting mantle con-
vection in the earth are the presence of curface plates and
production of heat from decay of ru livactive elements in the
interior. Sample ealculations are presented illustrating these
cffects. The first nimulation treats tectonic plates; they are
generally handled by applying a speeified velocity fiei-l at the
surface or by determining the shear strens on the surf e and
finding a aclf-consistent surface velocity form (Gable, 1989).
In cither case, a plate in an upper boundary condition modi
fication. Plates control the seale of the underlying convecting
system. Fig. i contraxts 3.D patterns with .ad without asur-
fnce plate. In both canen, a 1 x 3 x 3 box geometry wea used,
atl a zoning of 24 x 72 x 72 mesh eells. The Rayleigh namnber
was set at 10%. In the first, n plate in apecified, moving in the
+ 1 dirceetion st a speed of S0 (non dimensionalized, corre
apoticls to A real apeed of several em/yr, in the range of actual
platen). In the second, the upprr surface is a free shp bound
ary. In both enleulations, the bottom suefnee is free slip and
the midden are reflective  Initial conditions for bath cason are
a conductive tempernture profile plus n tandom perturbation
with mnximum wuplitude of 001, In Fig. 1, n hexagonal
pattern in sevh in the temperatiae structure, This i only
one possible mode; the initinl conditions are also important
in determining, the final pattern seen in 3 1 geometries {se



Travis, Olson and Schubert, 1990). In Fig. 1, the flow field is
completely different; it is now organized into long rolls paral-
lel to the direction of motion of the plate. These long roll-like
structures may provide a basis for explaining lineations seen
in gravity maps of the large Pacific plate.

Fie  lin). Non-dimensional tetnperavure surfuces of T=0.35 (up-

per surface) and T=0.75 (lower) for convectionin a 1
x 3 x 3 box at Rayleigh nmber of 10° with surface
plate Plate is meving from right to left at veloc-
ity of 500 (non-dimrnsional) (b) Non-dimensional
temperature surfuces of T=:0.25 (upper) and T=0.55
{lowet) nnder same cuaditions as (1) except that sur-
face plate has been replaced by a free surface (no
shens i conndition. Flows in both cases have reached
astendy state

A econd 3 D simulation is presented to show the large differ-
ence that internnd heating, can make on planforms. This sit
alanion (Travis, Weinstein mid Olnon, 1900) was succensfully
comnpuied to a Inboratory experiment ( Weinstein and Qlson,
1990) snel is therefore & code valudation exercine as well  In
thi ense a geometry of a1 x 3 x 3 hox is used, with 28 x
v x R4 mesh zoues i the verhieal andd horizontal diestions,
tespeetively The Rayleigh munber based on hottom heating,
1 h x 100 Upper and lower surfaces are no shp bound
nnes aned mides me refleetive A ealeulation without internal
heating, was perforined for comprison purposes The resa,,

ing flow (Fig. 2a) consists of an almost steady, spoke-shaped
pattern of connected upwelling and downwelling ridges, about
equal in magnitude. The upwelling aystem is offset so that
downwelling ridges are roughly perpendicular to the upwelling
pattern. In the second calculation, internal heating was added
to simulate radioactive decay in the earth's interior. The re-
sulting flow pattern (Fig. 2b) is nuw very differcnt; down-
welling plumes and ridges form and breakup on a fairly rapid
timescale. Upwelling is diffuse and poorly organized. The im-
plication is that thiese ridges and downwelling plumes are im-
portant f{actors in controlling where and when plates subduct.
Rayleigh number based on internal heating was 1.8 x 10°. In
the first simulation, a conductive profile with a 0.001 random
perturbation was usci as the initial temperature field. The
second was started by setting D in Eqn. (6) to 12 at time
0.16 for the flow field of Case 1. The flow caiculated in Figs.
(2a) and (2b) agreed quite well with experimental observa-
tion, both in terms of the flow patterns seen and in terms of
the rate of change of the pat’ :rns, providing a validation of
the numerical model.

Fig. 2(n}) Temperature surfaces of 7°= 0.25 (upper ) and T'=.0.75
(lower) for conveetion ina 1 x 2 x 3 box at Rayleigh
mumber of 15 x 10%, no internal heating anl no
slip upper and lower boundary conditions. Flow s
nlightly time dependent () Sam: geometiy and
boundery conditions, but now with interunl heat
ing, as well ax bottotn heating Pateetn s tune
dependent
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Fig 3rn) Aunular geometry used in penetrative convection studiea. Inner and oute; radii are in same ratio as the enrth.
Alsu shown in initial interface between light aml heavy material (light material resides in outenmost annular
nug). Rayliigh munber is 107. Mesh cousists of 96 cells in the radial direction and 768 in the angular direction.
Time in years. Temperature in the anpulun initially equal to one in the interior and zero at the surface. (b)
Interfnce hetween materialn at 2 billion years. Convection is oceurring only in the outer third of the annulus.
() Interface at 3 billion years. Convection cells have pepetrated deep into the i . ~rior. Interface is becoming
highly distorted; structure in some locations in thinner than a single mesh cell. (a; Concentration field at
3 hillion years for same caleulation as (a) - (¢) but with finite difference solution of Eqn. (7) alone rather
than combined with front tracking. Overall structure in similar to that of (¢) but significant differences are
developing and mnall seale structure s quit- different.



(2) Penetrative Convection With Two Immiscible Ma-
terials

In this example, an initially layered system (light over heavy;
Ap/p = 0.4) is established in an annulus to represent a pos-
sible early earth chemical compositional structure. The tem-
perature profile is initially uniformn and hot in the interior
(T = 1) with a linear decrease to 0 over the outer 6 nodes.
A finite difference mesh of 96 cells radially and 768 cells az-
imuthally is used for the solutions of Eqns. (8) and (7). The
Rayleigh number is 107, which is believed to be close to the
present average carth value. The interest is ii knowing when
and how large scale convection evolves. Fig. 3a shows the ini-
tial location of the interface separating light from heavy ma-
terial. The subsequent evolution at 2 billion and at 3 billion
years, as calculated using front-tracking with the finite dif-
ference -spectral method described earlier, are shown in Figs.
3b and 3c. At early times, convection is restricted to the up-
per part of the mantle. As the interior is cooled, convective
motion penetrates farther, and adjacent cells coalesce into
larger cells. The interface is getting strongly listorted; some
seclions are crossing 8 single mesh cell severa) times. The
pattern in Fig. 3c is to be contrasted with the concentration
field shown in Fig. 3d, which shows concentration contours
when using only the finite difference solution for Eqn. (7)
rather than the front tracking scheme. The sharp interfaces
of Fig. 3c separating the two immiscible materials has be-
come diffuse in Fig. 3d. The general features of the flow in
both cases are similar, but as time goes on, the one using only
the finite difference method begins to deviate more and more
because the buoyancy term in Eqn. (1) is diverging from the
value provided by the more accurate front-tracking algorithm.
By the end of the simulation, the interface has grown to in-
clude over 80.000 particler. These results of course depend
on the inita! conditions chosen. This simulation is intended
maiuly to demonstrate the value of coupling a front-tracking
algorithm to a fimite difference solution. Three dimensional
calculations using the interface tracking scheme and several
species of differing density and viscosity are planned in the
future to address the fate of subducting alabs ini the vicinity
of the carth's 670 kin dincontinuity.

CONCLUSION

The advent of supereomputers and the combination of vari-
onus n.merical methords to create hybrid schemes is allowing
us to sinminte 2.1 and 3 D models of geophysieal conveetion
systems at a level of detnil and realism not possible just a
few years age There are still challenging problems ahead in
ninleling, surh as finding truly efficient methods for inelud-
ing highly varinble viseosity, nonlinear rheology, and plate
brenkinig in our earth madels. M-ving mesh methods, which
corhine the best features of finite difference and fitite ele-
ment approximntions with the advantages of Lagrangian and
fromt tracking algorithms probably hold the most promise for
tieating these diflicult problems
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